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Fig. 6.4 Experimental evidence of
transition for water flow in a !14!-in
smooth pipe 10 ft long.

mean values of velocity, pressure, force, etc. But turbulence can change the mean val-
ues dramatically, e.g., the sharp drop in drag coefficient in Fig. 5.3. A German engineer
named G. H. L. Hagen first reported in 1839 that there might be two regimes of vis-
cous flow. He measured water flow in long brass pipes and deduced a pressure-drop law

"p # (const) $ entrance effect (6.1)

This is exactly our laminar-flow scaling law from Example 5.4, but Hagen did not re-
alize that the constant was proportional to the fluid viscosity.

The formula broke down as Hagen increased Q beyond a certain limit, i.e., past the
critical Reynolds number, and he stated in his paper that there must be a second mode
of flow characterized by “strong movements of water for which "p varies as the sec-
ond power of the discharge. . . .” He admitted that he could not clarify the reasons for
the change.

A typical example of Hagen’s data is shown in Fig. 6.4. The pressure drop varies
linearly with V # Q/A up to about 1.1 ft/s, where there is a sharp change. Above about
V # 2.2 ft/s the pressure drop is nearly quadratic with V. The actual power "p % V1.75

seems impossible on dimensional grounds but is easily explained when the dimen-
sionless pipe-flow data (Fig. 5.10) are displayed.

In 1883 Osborne Reynolds, a British engineering professor, showed that the change
depended upon the parameter &Vd/', now named in his honor. By introducing a dye
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Fig. 6.8 Typical velocity and shear
distributions in turbulent flow near
a wall: (a) shear; (b) velocity.

geometry and flow conditions, as detailed in Refs. 1 to 3. Fortunately, in duct and
boundary-layer flow, the stress !"u!#!$!#! associated with direction y normal to the wall
is dominant, and we can approximate with excellent accuracy a simpler streamwise
momentum equation

" " ! % "gx % (6.15)

where & ' ( ! "u!#!$!#! ' &lam % &turb (6.16)

Figure 6.8 shows the distribution of &lam and &turb from typical measurements across
a turbulent-shear layer near a wall. Laminar shear is dominant near the wall (the wall
layer), and turbulent shear dominates in the outer layer. There is an intermediate re-
gion, called the overlap layer, where both laminar and turbulent shear are important.
These three regions are labeled in Fig. 6.8.

In the outer layer &turb is two or three orders of magnitude greater than &lam, and
vice versa in the wall layer. These experimental facts enable us to use a crude but very
effective model for the velocity distribution u!(y) across a turbulent wall layer.

We have seen in Fig. 6.8 that there are three regions in turbulent flow near a wall:

1. Wall layer: Viscous shear dominates.
2. Outer layer: Turbulent shear dominates.
3. Overlap layer: Both types of shear are important.

From now on let us agree to drop the overbar from velocity u!. Let &w be the wall shear
stress, and let ) and U represent the thickness and velocity at the edge of the outer
layer, y ' ).

For the wall layer, Prandtl deduced in 1930 that u must be independent of the shear-
layer thickness

u ' f((, &w, ", y) (6.17)

By dimensional analysis, this is equivalent to

*u!+
*y

*&
+
*y

*p!+
*x

d u!+
dt
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Fig. 6.9 Experimental verification
of the inner-, outer-, and overlap-
layer laws relating velocity profiles
in turbulent wall flow.

nearly every turbulent-flow problem presented in this and the next chapter. Many ad-
ditional applications are given in Refs. 2 and 3.

EXAMPLE 6.3

Air at 20°C flows through a 14-cm-diameter tube under fully developed conditions. The cen-
terline velocity is u0 ! 5 m/s. Estimate from Fig. 6.9 (a) the friction velocity u*, (b) the wall
shear stress "w, and (c) the average velocity V ! Q/A.

Solution

For pipe flow Fig. 6.9 shows that the logarithmic law, Eq. (6.21), is accurate all the way to the
center of the tube. From Fig. E6.3 y ! R # r should go from the wall to the centerline as shown.
At the center u ! u0, y ! R, and Eq. (6.21) becomes

! ln $ 5.0 (1)

Since we know that u0 ! 5 m/s and R ! 0.07 m, u* is the only unknown in Eq. (1). Find the
solution by trial and error or by EES

u* ! 0.228 m/s ! 22.8 cm/s Ans. (a)

where we have taken % ! 1.51 & 10#5 m2/s for air from Table 1.4.

Ru*
'

%
1

'
0.41

u0'
u*
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Fig. 6.12 Effect of wall roughness
on turbulent pipe flow. (a) The log-
arithmic overlap-velocity profile
shifts down and to the right; (b) ex-
periments with sand-grain rough-
ness by Nikuradse [7] show a sys-
tematic increase of the turbulent
friction factor with the roughness
ratio.

For example, at Red ! 105, f ! 0.0180, and ys /d ! 0.001, a wall roughness of about
0.001d will break up the sublayer and profoundly change the wall law in Fig. 6.9.

Measurements of u(y) in turbulent rough-wall flow by Prandtl’s student Nikuradse
[7] show, as in Fig. 6.12a, that a roughness height " will force the logarithm-law pro-
file outward on the abscissa by an amount approximately equal to ln "#, where "# !
"u*/$. The slope of the logarithm law remains the same, 1/%, but the shift outward
causes the constant B to be less by an amount &B ! (1/%) ln "#.

Nikuradse [7] simulated roughness by gluing uniform sand grains onto the inner
walls of the pipes. He then measured the pressure drops and flow rates and correlated
friction factor versus Reynolds number in Fig. 6.12b. We see that laminar friction is
unaffected, but turbulent friction, after an onset point, increases monotonically with the
roughness ratio "/d. For any given "/d, the friction factor becomes constant (fully rough)
at high Reynolds numbers. These points of change are certain values of "# ! "u*/$:

'
"u
$
*

' ( 5: hydraulically smooth walls, no effect of roughness on friction

5 ) '
"u
$
*

' ) 70: transitional roughness, moderate Reynolds-number effect

'
"u
$
*

' * 70: fully rough flow, sublayer totally broken up and friction
independent of Reynolds number

For fully rough flow, "# * 70, the log-law downshift &B in Fig. 6.12a is

&B ! '
%
1

' ln "# + 3.5 (6.61)
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Fig. 6.13 The Moody chart for pipe
friction with smooth and rough
walls. This chart is identical to Eq.
(6.64) for turbulent flow. (From
Ref. 8, by permission of the ASME.)
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Table 6.1 Recommended
Roughness Values for Commercial
Ducts

!

Material Condition ft mm Uncertainty, %

Steel Sheet metal, new 0.00016 0.05 ! 60
Stainless, new 0.000007 0.002 ! 50
Commercial, new 0.00015 0.046 ! 30
Riveted 0.01 3.0 ! 70
Rusted 0.007 2.0 ! 50

Iron Cast, new 0.00085 0.26 ! 50
Wrought, new 0.00015 0.046 ! 20
Galvanized, new 0.0005 0.15 ! 40
Asphalted cast 0.0004 0.12 ! 50

Brass Drawn, new 0.000007 0.002 ! 50
Plastic Drawn tubing 0.000005 0.0015 ! 60
Glass — Smooth Smooth
Concrete Smoothed 0.00013 0.04 ! 60

Rough 0.007 2.0 ! 50
Rubber Smoothed 0.000033 0.01 ! 60
Wood Stave 0.0016 0.5 ! 40

Values of (Vd) for water at 60°F (velocity, ft/s × diameter, in)
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Fig. 3.11 Control-volume analysis
of drag force on a flat plate due to
boundary shear.

For the given numerical values we have

Rx ! "(1000 kg/m3)(0.0003 m2)(5 m/s)2! "7.5 (kg # m)/s2! "7.5 N Ans.

This acts to the left; i.e., it requires a restraining force to keep the plate from accelerating to the
right due to the continuous impact of the jet. The vertical force is

Fy ! Ry ! ṁ1$1 % ṁ2$2 " ṁj$j

Check directions again: $1 ! V1, $2 ! "V2, $j ! 0. Thus

Ry ! ṁ1(V1) % ṁ2("V2) ! &12&ṁj(V1 " V2) (6)

But since we found earlier that V1 ! V2, this means that Ry ! 0, as we could expect from the
symmetry of the jet deflection.9 Two other results are of interest. First, the relative velocity at
section 1 was found to be 5 m/s up, from Eq. (3). If we convert this to absolute motion by adding
on the control-volume speed Vc ! 15 m/s to the right, we find that the absolute velocity V1 !
15i % 5j m/s, or 15.8 m/s at an angle of 18.4° upward, as indicated in Fig. 3.10a. Thus the ab-
solute jet speed changes after hitting the plate. Second, the computed force Rx does not change
if we assume the jet deflects in all radial directions along the plate surface rather than just up
and down. Since the plate is normal to the x axis, there would still be zero outlet x-momentum
flux when Eq. (4) was rewritten for a radial-deflection condition.

EXAMPLE 3.11

The previous example treated a plate at normal incidence to an oncoming flow. In Fig. 3.11 the
plate is parallel to the flow. The stream is not a jet but a broad river, or free stream, of uniform
velocity V ! U0i. The pressure is assumed uniform, and so it has no net force on the plate. The
plate does not block the flow as in Fig. 3.10, so that the only effect is due to boundary shear,
which was neglected in the previous example. The no-slip condition at the wall brings the fluid
there to a halt, and these slowly moving particles retard their neighbors above, so that at the end
of the plate there is a significant retarded shear layer, or boundary layer, of thickness y ! '. The

3.4 The Linear Momentum Equation 153

9Symmetry can be a powerful tool if used properly. Try to learn more about the uses and misuses of
symmetry conditions. Here we doggedly computed the results without invoking symmetry.
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